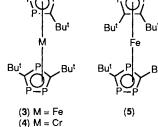
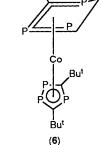
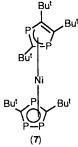
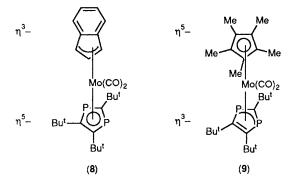

η^{3} - and η^{5} -Ligating Modes of 1,3-Diphosphacyclopentadienyl Rings in Structurally Related Molybdenum Complexes. Crystal and Molecular Structure of [Mo(η^{5} -C₅Me₅)(η^{3} -P₂C₃But₃)(CO)₂] and [Mo(η^{3} -C₉H₇)(η^{5} -P₂C₃But₃)(CO)₂] (C₉H₇ = indenyl)


Rainer Bartsch, Peter B. Hitchcock, and John F. Nixon* School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, U.K.


The modes of ligation of the two five-membered rings in $[Mo(\eta^5-C_5Me_5)(\eta^3-P_2C_3But_3)(CO)_2]$ and $[Mo(\eta^3-C_9H_7)(\eta^5-P_2C_3But_3)(CO)_2]$ show interesting differences.

The field of organotransition metal chemistry involving unsaturated organic ligands in which CH fragments are replaced by P is rapidly developing.¹⁻³ There is considerable current interest in the ligating properties of novel unsaturated ring systems containing two and three phosphorus atoms. In


previous publications^{4–8} we have shown how the $(P_3C_2But_2)^$ and $(P_2C_3But_3)^-$ ring systems (1) and (2) can be utilised in the synthesis of 'sandwich' compounds of the type (3)–(6) analogous to their better known η -cyclopentadienyl analogues. Syntheses and full structural characterisation of the



Bui

18 e sandwich complexes $[Fe(\eta^5-P_3C_2But_2)_2]$ (3) and $[Fe(\eta^5-P_3C_2But_2)(\eta^5-P_2C_3But_3)]$ (5),⁴ and the 16 e paramagnetic compound $[Cr(\eta^5-P_3C_2But_2)_2]$ (4)⁶ have been reported. Attempts to synthesise the 19 e system $[Co(\eta^5-P_3C_2But_2)_2]$ led instead⁷ to the 18 e diamagnetic complex $[Co(\eta^5-P_3C_2But_2)_-(\eta^4-P_3C_2But_2)_1]$ (6).

Recently⁸ we showed that treatment of a mixture of $Li(P_3C_2But_2)$ and $Li(P_2C_3But_3)$ with $[NiBr_2(monoglyme)_2]$ afforded the diamagnetic 18 e nickel complex $[Ni(P_3C_2But_2)-(P_2C_3But_3)]$ (7), in which the $P_2C_3But_3$ ring acts as an η^3 -ligand. No evidence was obtained for the formation of a paramagnetic 20 e analogue of nickelocene.

We now report that the $P_2C_3But_3$ ring can act both as η^3 - and as η^5 -ligand at the same metal depending on the nature of the other attendant ligands. Treatment of Li($P_2C_3But_3$) with

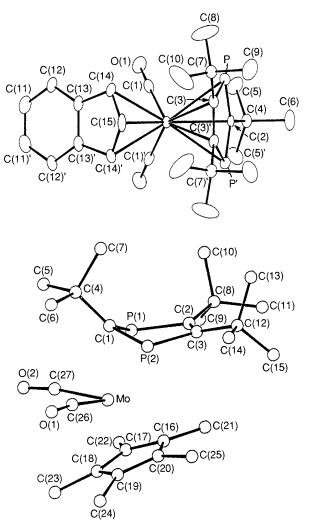


Figure 1. Molecular structures of (8) and (9). Selected bond lengths (Å) for (8): Mo-P 2.557(2), Mo-C(1) 1.941(9), Mo-C(2) 2.393(11), Mo-C(3) 2.537(8), Mo-C(14) 2.434(9), Mo-C(15) 2.222 (12); for (9): Mo-M1 2.123, Mo-M2 2.019, Mo-P(1) 2.555(1), Mo-P(2) 2.554(1), Mo-C(1) 2.292(3), Mo-C(16) 2.374(3), Mo-C(17) 2.321(4), Mo-C(18) 2.324(4), Mo-C(19) 2.352(4), Mo-C(20) 2.378(3). M1 and M2 are the centroids of P(1), P(2), C(1), and C(16) to C(20), respectively.

 $[Mo(\eta^5-C_9H_7)(CO)_2(MeCN)_2]^+ BF_4^-$ and $[Mo(\eta^5-C_5Me_5)-(CO)_2(MeCN)_2]^+ CF_3SO_3^-$ respectively affords the black molybdenum complex $[Mo(\eta^3-C_9H_7)(\eta^5-P_2C_3But_3)(CO)_2]$ (8), and the red-orange molybdenum complex $[Mo(\eta^5-C_5Me_5)(\eta^3-P_2C_3But_3)(CO)_2]$ (9), in low yields (1 and 5%). No evidence was obtained for the formation of paramagnetic 20 e sandwich complexes. The ³¹P NMR spectrum of (9) shows a singlet for the two equivalent ring phosphorus atoms, and the ¹H NMR spectrum two signals for the two sets of inequivalent But groups in the ratio 2:1 as well as a singlet for the C₅Me₅ protons.[†] No NMR data could be obtained for (8) owing to its poor solubility in organic solvents.

Confirmation of the molecular structures of (8) and (9) came from single crystal X-ray diffraction studies (see Figure

⁺ For (9), NMR spectra: ¹H δ 2.01 (s, C₅Me₅), 1.44 (s, Bu⁴), and 1.31 (s, Bu⁴) (relative intensity 5:3:6); ³¹P{¹H} (relative to phosphoric acid) δ + 66.0 (s) ppm; IR spectrum (carbonyl region): 1927 and 1983 cm⁻¹.

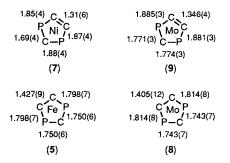


Figure 2. Bond lengths for the C-C-P-C-P system in (5), (7), (8), and (9).

1).‡ The $(P_2C_3Bu^t_3)$ ring is planar and η^5 -bonded to the metal in (8) whereas it is η^3 -ligated and bent along the P(1)–P(2) vector in (9) so that the C=C fragment within the ring does not interact with the nickel atom. The indenyl system is η^3 -ligated in (8) while the C₅Me₅ ring is η^5 -bonded to the metal in (9).

The bond distances and bond angles in the η^{5} -1,3-diphosphacyclopentadienyl ring in (8) are similar to those previously

For (9): $C_{27}H_{42}M_0O_2P_2$, M = 556.5, monoclinic, space group $P_{2_1/c}$, a = 18.452(4), b = 14.533(5), c = 10.523(5) Å, $\beta = 93.98(2)^\circ$, U = 2815 Å³, Z = 4, $D_c = 1.31$ g m⁻¹, F(000) = 1168, $\mu(Mo-K_{\alpha}) = 5.9$ cm⁻¹. The structure solution and refinement were as for (8) except that 2842 reflections were used out of 4087 total measured, and the final residuals were R = 0.028, $R_w = 0.040$. The diffraction data were weak.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. described for $[Fe(\eta^5-P_3C_2Bu^t_2)(\eta^5-P_2C_3Bu^t_3)]^4$ while the structural parameters in the η^3 -C₃P₂But₃ system in (9) are similar to those in the nickel complex $[Ni(\eta^5-P_3C_2Bu^t_2)(\eta^3 P_2C_3Bu^{t_3}$ (see Figure 2). It is well known that indenvl transition metal complexes can undergo more facile η^{5} - to η^3 -ring-metal interaction than their cyclopentadienyl analogues^{9,10} and this explains the η^5 - to η^3 -P₂C₃But₃ ring slippage in (9) but not in (8) where the C₅Me₅ ring prefers η^5 -ligation. The non-formation of 20 e molybdenum complexes with the P₂C₃But₃ ring systems is in accord with our previous observation on the nickel complex $[Ni(\eta^5-P_3C_2Bu_2^t)(\eta^3-P_2C_3Bu_3^t)]^8$ where the $P_2C_3Bu^t_3$ ring undergoes an η^5 - to η^3 -ring slippage in order to avoid forming a paramagnetic 20 e system similar to nickelocene. This may reflect the higher energy of the antibonding molecular orbitals in both P₃C₂But₂ and P₂C₃But₃ rings compared with their cyclopentadienyl analogues.

We thank the S.E.R.C. for their continuing support for this work.

Received, 27th November 1989; Com. 9/05057D

References

- 1 R. Appel, F. Knoll, and I. Ruppert, Angew. Chem., Int. Ed. Engl., 1981, 20, 731, and references cited therein.
- 2 J. F. Nixon, *Chem. Rev.*, 1988, **88**, 1327, and references cited therein.
- 3 M. Regitz and P. Binger, Angew. Chem., Int. Ed. Engl., 1988, 27, 1484, and references cited therein.
- 4 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1987, 1146.
- 5 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1988, 344, C37.
- 6 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1988, 356, C1.
- 7 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1988, 819.
- 8 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1989, 373, C17.
- 9 J. M. O'Connor and C. P. Casey, *Chem. Rev.*, 1987, **87**, 307, and references cited therein.
- 10 R. M. Kowalewski, A. L. Rheingold, W. C. Trogler, and F. Basolo, J. Am. Chem. Soc., 1986, 108, 2460.

[‡] Crystal data for (8): C₂₆H₃₄MoO₂P₂, M = 536.4, orthorhombic, space group Pnma, a = 11.524(4), b = 13.582(6), c = 15.959(4) Å, U = 2498 Å³, Z = 4, $D_c = 1.43$ g m⁻³, F(000) = 1112, μ (Mo- K_{α}) = 6.6 cm⁻¹. A total of 2500 unique reflections were measured on an Enraf-Nonius CAD4 diffractometer, and 1394 reflections [$I > 3\sigma(I)$] were used in the refinement. The structure was solved by heavy-atom methods and refined by least-squares, with non-hydrogen atoms anisotropic and H atoms fixed, to R = 0.073, $R_w = 0.093$ using the SDP-Plus program package.